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A B S T R A C T

The present study evaluated silver nanoparticle (AgNPs) toxicity using biomarkers of oxidative and metabolic
stress, immunological impairment and cellular damage in zebrafish (Danio rerio), as well as the optimal dose of
vitamin E neutralizing undesirable effects. Fish were fed for ten days and eight study groups were investigated:
controls, AgNPs exposure alone (1.5 mg L−1) and combined with three different vitamin E doses (1.5 mg L−1 of
AgNPs + vitamin E 100, 200 or 400 mg kg−1 of food), also one positive control group exposed to AgNO3 alone
or combined with the same vitamin E doses. D. rerio exposed to AgNPs alone or combined with the lower vitamin
E dose showed overall worse results in comparison with the control groups and the groups combining nano-
particles and 200 or 400 mg kg−1 of food of vitamin E-supplemented diet. AgNPs caused cell impairment by
increasing LDH activity and cortisol levels, generated oxidative stress by inhibiting SOD and CAT activity and
immunosuppression by inhibiting ACH50 and lysozyme activity. The groups exposed to Ag salt showed the same
response-pattern found for the NPs groups, reinforcing that Ag toxicity of AgNPs is mediated by Ag+. In con-
clusion, although AgNPs are toxic to Danio rerio, vitamin E supplementation at 200 or 400 mg kg−1 can act
protectively against its toxic effects.

1. Introduction

Silver nanoparticles (AgNPs) are among the most used nanopro-
ducts, due to their antibacterial properties (Aschberger et al., 2011; Yue
et al., 2015). AgNPs applications range from cosmetics, textiles and
disinfection products to food supplements (Navarro et al., 2008; Yue
et al., 2015). Studies have reported considerable leaching of silver from
AgNPs products (Stevenson et al., 2013). This leads to the releasing of
both the nanoparticles and dissolved silver into the aquatic environ-
ment, and raises concern about the adverse effects that AgNPs may
exert on aquatic organisms (Navarro et al., 2008; Stevenson et al.,
2013).

AgNPs toxic effects reflect, in part, the toxicity of the metal itself
(Griffitt et al., 2008a,b; Powers et al., 2011) Since silver (Ag) is highly
toxic at low ionic concentrations, toxicological studies involving this

element have been, increasingly, receiving greater attention (Choi
et al., 2010). In this regard, previous studies have demonstrated that
exposure to nanosilver may be related to the generation of oxidative
stress (Kim et al., 2007), damage to cell membranes and DNA (Pal et al.,
2007) or to the interaction of Ag+ ions with proteins and enzymes
(Yamanaka et al., 2005; Navarro et al., 2008).

It has been proven that AgNPs are toxic to a variety of aquatic or-
ganisms (Asharani et al., 2008; Griffitt et al., 2008a,b; Farkas et al.,
2011; Asghari et al., 2012; Lapresta-Fernández et al., 2012). More
specifically in Zebrafish, AgNPs were proven to be neurotoxic (Powers
et al., 2011), embryotoxic (Asharani et al., 2008; Massarsky et al.,
2013), cardiotoxic (Asharani et al., 2008) and oxidative stress pro-
moters, as well as the cause for alterations in global gene expression
profiles (Griffitt et al., 2013; Massarsky et al., 2013). Although nu-
merous studies have demonstrated the toxic effects of AgNPs, there is
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still a lack of understanding on how and what could protect organisms
from the deleterious effects of these compounds.

Vitamin E comprises fat-soluble compounds with antioxidant ac-
tivity. It is found naturally within food and is available as a dietary
supplement (Traber and Atkinson, 2007). Since it is a peroxyl radical
scavenger, it is important in preserving cellular membrane integrity
and, thus, maintaining cellular bioactivity (Traber and Atkinson, 2007).
Vitamin E is also important in maintaining and modulation immune
functions in fish (Cuesta et al., 2001; Pearce et al., 2003; Puangkaew
et al., 2004)

In ecotoxicology, physiological responses measured with the aid of
several biomarkers, such as immunological response, serum metabolites
and enzymatic activities, providing valuable insights and correlation on
adverse effects of xenobiotics in exposed organisms (Lewis et al., 1999;
Rao, 2006; Kavitha and Rao, 2007). Since data on the effects of AgNPs on
serum metabolite and immunological parameters in fish and the possible
protective effects of vitamin E are scarce, the main aim of this study, was
to determine what is the optimal dose of vitamin E to counteract the
damage caused through AgNPs exposure on a well-known vertebrate
model for toxicity assessment, the Zebrafish (Danio rerio) using a multi-
biomarker approach (Rubinstein, 2003; Parng, 2005).

2. Material and methods

2.1. Fish and experimental conditions

One thousand and eighty Zebrafish (Danio rerio) (Zebrafish,
Cypriniformes: Cyprinidae), weighing 1.93 ± 0.2 g, were obtained
from Gorgan, Iran. Fish were acclimatized for one week prior to the
experiment and fed three times a day with a commercial food (ALLER,
DENMARK Co. – with no additives). A 12:12 light/dark photoperiod
and water temperature (26.0 ± 1.0 °C) was maintained constant. The
following water physico-chemical parameters, namely pH (8.0 ± 8.4),
dissolved oxygen levels (6.0 mg L−1) and ammonia, nitrite, and nitrate
(< 0.1 mg L−1), were monitored daily. Sub-lethal dose of 1.5 mg L−1

AgNPs was chosen based on previous studies (Griffitt et al., 2008a,b;
Bowman et al., 2012; Hedayati et al., 2015). Half of the LC50 con-
centration found from present experiments (Appendix 1), 0.15 mg L−1

of AgNO3, was chosen for the positive control with the Ag salt.
The experiments were carried out in triplicate and consisted of eight

test groups: 0 + 0 - fish fed the control diet; 0 + 1.5 - fish fed the
control diet + 1.5 mg L−1 of AgNPs; 100 + 0 - fish fed the control
diet + vitamin E (100 mg kg−1 of food); 100 + 1.5 - fish fed the control
diet + vitamin E (100 mg kg−1 of food) + 1.5 mg L−1 of AgNPs;
200 + 0 - fish fed the control diet + vitamin E (200 mg kg−1 of food);
200 + 1.5 - fish fed the control diet + vitamin E (200 mg kg−1 of
food) + 1.5 mg L−1 of AgNPs; 400 + 0 - fish fed the control diet + vi-
tamin E (400 mg kg−1 of food); 400 + 1.5 - fish fed the control
diet + vitamin E (400 mg kg−1 of food) + 1.5 mg L−1 of AgNPs; and
one positive control group where fish were exposed to 0.15 mg L−1

waterborne AgNO3: 0 + AgNO3 - fish fed the control
diet + 0.15 mg L−1 of AgNO3; 100 + AgNO3 - fish fed the control
diet + vitamin E (100 mg kg−1 of food) + 0.15 mg L−1 of AgNO3;
200 + AgNO3 - fish fed the control diet + vitamin E (200 mg kg−1 of
food) + 0.15 mg L−1 of AgNO3; 400 + AgNO3 - fish fed the control
diet + vitamin E (400 mg kg−1 of food) + 0.15 mg L−1 of AgNO3. Fish
were randomly distributed into 30 L tanks. Fish were fed three times, at
8:00 am and 14:00 pm and 20:00 pm, for 10 days. Sampling occurred
after 10 days exposure.

2.2. Food preparation, AgNPs suspension and AgNo3 stock solution

The basic diet common to all groups contained 51.1% crude protein,
13.6% total lipid, 10.2% ash and 3.5% fiber. AgNPs at 1.5 mg L−1 were
added to the food isolated or combined with three doses of vitamin-E
(100, 200 or 400 mg kg−1 of food). The positive control groups also

received vitamin-E supplementation on the food with the same doses of
the AgNPs groups. AgNPs nanocolloids were prepared according to the
manufacturer's (Nanosany Company, Iran) instructions (Antimicrobial
Product 2 brand, 4000 ppm nanosilver concentration, mean particle
size of 20 nm). AgNO3 was purchased from Sigma-Aldrich (≥99.99%)
and a stock solution of 1000 mg L−1 used deionized water and was
prepared fresh before the exposure. All-rac-α-tocopherol, a synthetic-
source of vitamin E, was purchased from Merck (Germany). The oil
coating method using canola oil was employed to add vitamin E to the
fish diet (Treves-Brown, 2000; Ghafari Farsani et al., 2017).

2.3. Sampling

All fish were anaesthetized with clove powder (200 mg kg−1,
20 min) and killed after 10 days of continuous feeding. Blood was col-
lected without any anticoagulant from the caudal vessels of all fish
using 1 mL sterile syringes and allowed to clot at room temperature for
2 h. The samples were then centrifuged at 3000 rpm for 15 min at 4 °C.
The serum was pooled (n= 5) and stored at −80 °C for immunological
and enzymatic parameter analyses (Ghafari Farsani et al., 2017).

2.4. Immunological, oxidative stress and metabolic stress biomarkers

Serum lysozyme activity was measured by the addition of 50 μL of
D. rerio serum to 2 mL of a Micrococcus lysodeikticus suspension
(0.2 mg mL−1) in a 0.05 M sodium phosphate buffer (pH 6.2). The re-
action was carried out at room temperature and absorbance's were
determined spectrophotometrically at 450 nm after 0.25 min and 5 min.
One unit of lysozyme activity (U mL−1) was defined as the amount of
enzyme causing an absorbance decrease of 0.001 min−1. The method
was calibrated using a standard curve with lysozyme from hen egg
whites (Sigma, USA) in PBS based on the turbid metric method (Parry
et al., 1965). Alternative complement pathway activity (ACH50) was
determined based on the methods described by Yano (1992) and Sunyer
and Tort (1995) and assessed with the modifications described by Yeh
et al. (2008). The volume of supernatant complement leading to 50%
hemolysis (ACH50) was determined, and the number of ACH50 U mL−1

was calculated.
Superoxide dismutase (SOD) activity was determined using a com-

mercial kit (Pars Azmoon Co., Tehran, Iran) and catalase (CAT) activity
was determined according to Aebi (1984) by the decrease in absorbance
at 240 nm using 50 mM H2O2 as substrate.

Serum enzyme activity comprised lactate dehydrogenase (LDH),
alkaline phosphatase (ALP), alanine aminotransferase (ALT), acid
phosphatase (ACP) and aspartate aminotransferase (AST), estimated
using commercial kits (Pars Azmoon Co, Tehran, Iran) and analyzed
according to Peyghan and Takamy (2002).

Glucose, cortisol, total protein, albumin and globulin were de-
termined using commercial kits (Pars Azmoon Co, Tehran, Iran).
Cortisol and glucose assays were carried out as described by Shaluei
et al. (2012). Total protein content was determined based on the
method reported by Bradford (1976) using bovine serum albumin as
standard. Serum albumin concentrations were determined in acidic pH
with Bromocresol Green reagent. Serum globulin concentrations were
calculated by subtracting the albumin values from the total serum
protein concentrations (Bayunova et al., 2002).

2.5. Statistical procedures

Data was statistically analyzed and graphs were generated using the
GraphPad Prism v5 software (GraphPad Software, Inc.). Comparisons
among groups were performed using a one-way analysis of variance
(ANOVA) followed by the Bonferroni's or Dunnett's Multiple
Comparison Test. Tukey's test was applied to test inter-grouping
homogeneity. Statistical significance was set at p < 0.05. All data were
expressed as means ± standard error of the means.
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3. Results

Serum enzymes AST, ALT and ALP (Fig. 1a, b and c) exhibited lower
activities in the 1.5 + 0 and 1.5 + 100 groups compared to the control.

The groups treated with NPs and 200 or 400 of vitamin E or vitamin E
alone showed no differences in activity when compared to the group
that did not ingest the vitamin E supplementation or the AgNPs. Strong
to moderate positive (0.7–0.9) correlations between ALT, AST and ALP

Fig. 1. Cellular damage biochemical biomarkers in D. rerio serum. a) AST activity (U mL−1); b) ALT activity (U mL−1); c) ALP activity (U mL−1); d) ACP activity
(U mL−1); e) LDH levels (U mL−1); f) glucose levels (g dL−1); g) cortisol levels (g dL−1). 0 + 0, 0 + 1.5, 100 + 0, 100 + 1.5, 200 + 0, 200 + 1.5, 400 + 0 and
400 + 1.5 refer to the eight test groups. Data are expressed as means ± standard error of the means. Different letters indicate significant differences between groups
(p < 0.05).
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activities were found. LDH activity (Fig. 1e) was higher in the groups
treated with AgNPs alone and AgNPs combined with the lowest vitamin
E dose when compared to all other groups.

Glucose levels (Fig. 1f) were higher in the 1.5 + 0, 200 + 0,
200 + 1.5 and 400 + 0 groups when compared to the control and
100 + 0, 100 + 1.5 and 400 + 1.5 groups. Cortisol levels (Fig. 1g)
were higher in all the groups treated with AgNPs when compared to the
control or the groups exposed to NPs + vitamin E. However, the group
exposed only to the AgNPs displayed higher cortisol levels compared to
the groups that combined NPs exposure and vitamin E. Cortisol showed
strong to moderate negative (0.8–0.7) correlations with ALP, ALT and
AST activity and a moderate negative correlation with ACH50 activity.

SOD and CAT activities (Fig. 2a and b) were lower in the groups
exposed to AgNPs alone and AgNPs combined to the lowest vitamin E
dose compared to all groups and the control. Serum biochemical
parameters of total protein and albumin presented lower levels in the
0 + 1.5 and 100 + 1.5 groups compared to all other analyzed experi-
mental groups. However, the groups treated with 200 mg and 400 mg of
vitamin E supplementation displayed higher levels of both total protein
and albumin (Fig. 3a and b). The group supplemented with the highest
dose of vitamin E presented higher globulin levels than all the other
groups in the present study (Fig. 3c). Humoral innate immune para-
meters, ACH50 and lysozyme activity, presented lower activities in the
groups exposed to the NPs alone or combined with the lowest dose of
vitamin E supplementation (Fig. 3d and e).

Ag+ measured concentration in water on groups exposed to the Ag
salt was 0.097 ± 0.002 mg L−1. Overall, the groups exposed to AgNO3
alone or supplemented with vitamin E showed the same trend observed
for the NPs exposed groups (Table 1).

4. Discussion

AST, ALT, ALP, ACP and LDH enzymes are predominant in the liver
(Kori-Siakpere et al., 2012). When damage occurs to hepatic tissues,
these enzymes are released into the bloodstream leading to increased
activities in plasma (Velisek et al., 2009; Shahsavani et al., 2010;
Kumari et al., 2011; Atli et al., 2015). However, the results of the study
indicate decreased AST, ALT, ALP and ACP activity in groups exposed
to AgNPs alone or associated with the lower vitamin E dose. Similar
results have been reported for rats exposed to AgNPs (Sulaiman et al.,
2015). It is postulated that this decrease can be caused by the in-
activation of thiol (–SH) groups and amino transaminases by the AgNPs,
consequently causing the malfunctioning of several proteins and reac-
tions (Abbas et al., 2011; Adeyemi and Whiteley, 2013). Fish exposed to
pesticides have also exhibited lower activities of these enzymes (Sastry
and Sharma, 1980; Luskova et al., 2002; Khoshbavar-Rostami et al.,
2004).

On the other hand, LDH activity was higher in the same groups

where ALT, AST, ALP and ACP activities were found to be inhibited,
suggesting impairment of liver function (Kang et al., 2012; Wu and
Zhou, 2013; Ghafari Farsani et al., 2017; Shadegan and Banaee, 2018).
In addition, as LDH is responsible for the interconversion of pyruvate to
lactate in glycolysis, changes in the energy production and cellular
metabolism pathways during AgNPs exposure was possible (Osman
et al., 2007; Vieira et al., 2008; Domingues et al., 2010). Accordingly,
increased circulating cortisol in all groups exposed to the AgNPs was
observed, establishing a link between the changes detected in LDH and
stress responses in exposed zebrafish. Cortisol is an established bio-
marker of stress-intensity (Barton, 2002; Shaluei et al., 2012; Akbary
et al., 2016) and plays a role in increasing energy availability through
gluconeogenesis (Saravanan et al., 2011), thereby confirming the dis-
ruption of energy production by the cellular metabolism. Several stu-
dies have reported increased plasma cortisol after exposure to metals,
nanomaterials and, more importantly, AgNPs (Laflamme et al., 2000;
Brauner and Wood, 2002; Katuli et al., 2014; Ghafari Farsani et al.,
2017).

Cytotoxicity induced by AgNPs is mediated by the generation of
reactive oxygen species (ROS) and oxidative stress (Kim et al., 2007;
Choi et al., 2010; Lima et al., 2012). The release of the metal ions from
the nanoparticles enhances ROS production, leading to oxidative da-
mage, including lipid peroxidation, changes in membrane permeability,
protein carbonylation and DNA damage (Xia et al., 2006; Khan et al.,
2015; Sayed and Soliman, 2017). Thus, as SOD is the first enzyme to
cope with oxygen radicals and CAT facilitates the reduction of H2O2

into H2O (Van der Oost et al., 2003), changes in SOD and CAT activities
are expected. In this regard, inhibition of both SOD and CAT activities
in the groups exposed to AgNPs alone and AgNPs combined with the
lower dose of vitamin E supplementation were observed. Similar results
have been reported by Choi et al. (2010), Devi et al. (2015) and Sayed
and Soliman (2017). In addition, Atli et al. (2006) have demonstrated
that CAT activity is decreased by Ag exposure, although it is stimulated
by other metals. SOD and CAT inhibition may lead to the accumulation
of oxyradicals and cause oxidative damage, indicating failure of the
antioxidant defense mechanism in protecting the organism from da-
mages caused by nanoparticle exposure.

Plasma total protein levels are applied as a sensitive fish health
indicator, because they can reflect liver health conditions (John, 2007;
Palaniappan and Vijayasundaram, 2009; Katuli et al., 2014). Herein,
decreases in serum total protein and albumin levels were observed in
AgNPs-treated zebrafish, impairment of liver functions and overall
changes in metabolism. These results also suggest changes in protein
synthesis, which may be caused due to damage to protein-synthesizing
subcellular structures and inhibition of hepatic synthesis of blood pro-
teins (Fontana et al., 1998; Palaniappan and Vijayasundaram, 2009). In
addition, AgNPs be responsible for reducing the synthesis of total pro-
teins and albumin in the liver (Gokcimen et al., 2007). Other authors

Fig. 2. Oxidative stress biochemical biomarkers in D. rerio serum. a) SOD activity (U. mg prot−1); b) CAT activity (nmol·mg−1 prot). 0 + 0, 0 + 1.5, 100 + 0,
100 + 1.5, 200 + 0, 200 + 1.5, 400 + 0 and 400 + 1.5 refer to the eight test groups. Data are expressed as means ± standard error of the means. Different letters
indicate significant differences between groups (p < 0.05).
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Fig. 3. Biochemical biomarkers of immunological response and metabolism in D. rerio serum. a) protein levels (g dL−1); b) albumin levels (g dL−1); c) globulin levels
(g dL−1); d) ACH50 activity (U mL−1); e) Lysozyme activity (U mL−1). 0 + 0, 0 + 1.5, 100 + 0, 100 + 1.5, 200 + 0, 200 + 1.5, 400 + 0 and 400 + 1.5 refer to the
eight test groups. Data are expressed as mean ± standard error of the mean. Different letters indicate significant differences between groups (p < 0.05).

Table 1
Biochemical biomarkers in the serum of D. rerio exposed to AgNO3. 0 + 0, 0+ AgNO3, 100+ AgNO3, 200+ AgNO3, 400+ AgNO3 refer to the five test groups. Data
are expressed as mean ± standard error of the mean. Asterisks indicate significant differences from the control (*p < 0.05; **p < 0.01; ***p < 0.001).

Positive control (AgNO3) – biochemical biomarkers

0 + 0 0 + AgNO3 100 + AgNO3 200 + AgNO3 400 + AgNO3

Glucose (g dL−1) 77.67 ± 2.60 150.7 ± 2.33*** 96 ± 2.31*** 90 ± 2.08* 84 ± 2.31
Cortisol (g dL−1) 4 ± 0.31 26.26 ± 1.85*** 22.67 ± 1.45*** 17.42 ± 1.45** 11.34 ± 0.35
ALT (U mL−1) 8.19 ± 0.38 6.09 ± 0.13** 6.45 ± 0.26* 6.96 ± 0.31 7.67 ± 0.45
AST (U mL−1) 18.05 ± 0.67 14.20 ± 1.36* 15.11 ± 0.65 18.28 ± 0.66 19.45 ± 1.05
ALP (U mL−1) 26.67 ± 1.20 11.73 ± 0.73*** 13.50 ± 0.87*** 22.29 ± 0.98* 23.62 ± 0.93
ACP (U mL−1) 17.5 ± 0.76 15.33 ± 1.21 19.07 ± 0.95 22.51 ± 1.38* 20.73 ± 1.24
LDH (U mL−1) 618.3 ± 41.29 1046 ± 29.08*** 1028 ± 31.93*** 650.7 ± 10.27 579.7 ± 6.69
SOD (U·mg prot−1) 76.67 ± 6.64 37 ± 2.31*** 54 ± 4.62* 73 ± 2.52 64.33 ± 4.26
CAT (nmol·mg−1 prot) 9.02 ± 0.17 4.06 ± 0.70*** 5.19 ± 0.54** 7.85 ± 0.59 8.81 ± 0.40
Total Protein (g dL−1) 11.33 ± 0.35 7.40 ± 0.37*** 8.69 ± 0.28** 10.31 ± 0.35 11.11 ± 0.72
Albumin (g dL−1) 7.27 ± 0.29 4.08 ± 0.45** 4.71 ± 0.28** 6.24 ± 0.42 6.35 ± 0.63
Globulin (g dL−1) 4.37 ± 0.52 3.42 ± 0.39 3.48 ± 0.31 3.65 ± 0.58 4.12 ± 0.49
Lysozyme (U mL−1) 331 ± 17.39 240.3 ± 10.04*** 251 ± 9.71** 360.7 ± 6.12 361.8 ± 11.29
Complement - ACH50 (U mL−1) 13.67 ± 0.88 6.33 ± 0.25*** 7.38 ± 0.26*** 13.57 ± 0.75 14.14 ± 0.32
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have also reported that total protein and albumin levels are decreased
in fish exposed to different pollutants (Vijayan et al., 1997; Velisek
et al., 2009).

Another application of total serum proteins, along with cortisol le-
vels, is the evaluation of innate immune humoral parameters in fish
(Shakoori et al., 2019). In this regard, the decrease of serum proteins
and increases in plasma cortisol in AgNPs-exposed fish may be related
to a suppression of the innate immune response (Montero et al., 1999;
Han et al., 2014). This was corroborated herein, where ACH50 and
lysozyme activity were also inhibited in fish exposed to AgNPs alone or
combined with the lowest vitamin E dose. Lysozymes and ACH50 dis-
play antibacterial and antivirus activities and are important compo-
nents of the innate immune system (Skouras et al., 2003; Rooijakkers
and Van Strijp, 2007). This is in agreement with previous studies and
corroborates the fact that AgNPs induce immunosuppression (Gagné
et al., 2012; Bruneau et al., 2016). In fact, AgNPs can directly bind to
lysozymes and change their structure (Wang et al., 2017).

Biomarkers results, LDH, CAT, SOD, protein levels and ACH50, in
the simultaneous treatments combining AgNPs and vitamin E resulted
in significant protection against metabolic and oxidative stress and
immunosuppression in the groups that underwent 200 mg and 400 mg
vitamin E supplementation. The inhibition of ROS formation due to the
scavenging property of vitamin E (Al-Jassabi and Khalil, 2006; Ural,
2013; Ghafari Farsani et al., 2017) could have restored SOD and CAT
activities. Thus, it is possible that an increase in the activity of these
enzymes could also have contributed to the elimination of the ROS-
induced production by the AgNPs (Ghafari Farsani et al., 2017).

Still, the toxicity of AgNO3 and AgNPs didn't differ significantly and
the vitamin E supplementation had similar positive outcomes in both
cases, even if the route of exposure were different. That offset is in
accordance with previous studies that already confirmed that acute
toxicity of AgNPs to fish is mediated by Ag+ (Kim et al., 2011;
Massarsky et al., 2013; Ribeiro et al., 2014; Groh et al., 2015).

Vitamin E supplementation could, thus, prevent stress-related im-
munosuppression, by bringing the evaluated immunological parameters
back to levels similar to the control group. In addition, vitamin E
supplementation has been shown to enhance resistance to diseases and

reduce the effects of metabolic stress in humans and fish (Meydani
et al., 1990; Montero et al., 1999; Clerton et al., 2001; Puangkaew et al.,
2004). However, even though cortisol was decreased, it did not match
levels of the control fish, demonstrating that, although overall meta-
bolic stress could be reduced by vitamin E, this compound did not
confer total protection against AgNPs exposure.

5. Conclusions

Sublethal doses of 1.5 mg L−1 of AgNPs and 0.15 mg L−1 of AgNO3

induced oxidative stress responses, metabolic disturbances and trig-
gered immunological responses in zebrafish. However, vitamin E sup-
plementation conferred a protective effect against the adverse effects
caused by both AgNPs and AgNO3. The best dose for vitamin E sup-
plementation to counteract Ag exposure adverse effects ranged between
200 and 400 mg kg−1 in food. The most adequate biomarkers to assess
not only the toxicological effects of the AgNPs or AgNO3, but also the
protective effects of vitamin E, were LDH, CAT and ACH50 activities.
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Appendix 1

Table 2
Zebrafish Cumulative mortality (n= 21, each concentration) exposed to acute AgNO3.

AgNO3 lethal concentrations (ppm) Mortality (No.)

Number of samples 24 h 48 h 72 h 96 h

0 21 0 0 0 0
0.1 21 0 0 0 2
0.25 21 0 2 3 10
0.5 21 2 4 6 17
1 21 2 7 13 21
2 21 4 8 16 21

Table 3
Calculation of LC50 for Zebrafish exposed to AgNO3.

Concentration (ppm)

24 h 48 h 72 h 96 h

LC10 1.27 ± 0.005 0.40 ± 0.001 0.16 ± 0.001 0.09 ± 0.001
LC30 2.35 ± 0.005 1.40 ± 0.001 0.74 ± 0.001 0.22 ± 0.001
LC50 3.10 ± 0.005 2.09 ± 0.001 1.15 ± 0.001 0.31 ± 0.001
LC70 3.85 ± 0.005 2.77 ± 0.001 1.55 ± 0.001 0.40 ± 0.001
LC90 4.94 ± 0.005 3.77 ± 0.001 2.13 ± 0.001 0.53 ± 0.001
LC99 6.43 ± 0.005 5.14 ± 0.001 2.94 ± 0.001 0.71 ± 0.001
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