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A B S T R A C T

The present research aimed to investigate the potential effects of dietary garlic supplementation on the health
status of common carp (Cyprinus carpio) exposed to ambient ammonia toxicity. The fish were fed with either of 0
(control), 0.5, 1 and 1.5% garlic levels for 35 days. They were then challenged with 0.5 mg/L ambient unionized
ammonia‑nitrogen for 3 h. Blood samples were taken before and after ammonia exposure to measure the an-
tioxidant, enzymatic and immune responses of common carp. The results showed that garlic administration
significantly decreased plasma glucose, cortisol and malondialdehyde (MDA) levels, and alanine transaminase
(ALT), alkaline phosphatase (ALP), aspartate transaminase (AST) and glutathione peroxidase (GPX) activities.
Also, it significantly increased plasma catalase (CAT), lysozyme, alternative complement (ACH50) and bacter-
icidal activities, and immunoglobulin level, but had no effect on plasma superoxide dismutase activity. Ammonia
exposure led to significant increases in plasma cortisol, glucose, MDA, SOD, CAT, GPX, ALT, AST, and ALP and
decreases in ACH50, total Ig, bactericidal activity. Garlic supplementation significantly mitigated stress, oxi-
dative stress and changes in plasma enzymatic activities in the fish exposed to ammonia. In conclusion, the
current results suggest that dietary administration of garlic, especially at 1 and 1.5%, has beneficial effects to
improve plasma antioxidant and immunological parameters and it was effective to mitigate the adverse effects of
ammonia toxicity on antioxidant, enzymatic and immune responses in common carp.

1. Introduction

Common carp (Cyprinus carpio) is one of the most important farmed
fishes in many countries.

The production of this species through aquaculture accounts for
approximately 97.3% of its worldwide production (FAO, 2019). Re-
cently, the intensive culture of common carp as a promising approach
to meet demands has been developed in different countries (Hoseinifar
et al., 2019). However, high stocking density may lead to accumulation
of organic matter and toxic inorganic nitrogen as ammonia is the major
part of the nitrogenous wastes of fish excrete (Adineh et al., 2019). In
addition, a un-eaten feed can be decomposed in water and results in the
formation of ammonia (Hoseini et al., 2019). Therefore, ammonia may
reach an unsafe level and threaten fish health. Among nitrogenous

compounds, ammonia is the most toxic for aquatic animals and high
water ammonia causes to internal ammonia excretion impairment,
which leads to an increase of ammonia uptake and even death (Kim
et al., 2019). Previous researches showed the lethal effects of ammonia
exposure on different fish species including common carp (Diricx et al.,
2013), rainbow trout, Oncorhynchus mykiss (Wicks et al., 2002), big
head carp, Hypophthalmythys nobilis (Sun et al., 2012), grass carp, Cte-
nopharynodon idellus (Xing et al., 2016), crucian carp, Carassius auratus
(Ren et al., 2016) and yellow catfish, Pelteobagrus fulvidraco (Li et al.,
2016). Moreover, it has been demonstrated that sub-lethal ammonia
exposure leads to changes in feeding behaviour, reduced growth, phy-
siological disturbances in blood chemistry, immune suppression and
oxidative stress in farmed fishes (Hoseini et al., 2019; Kim et al., 2019;
Zhang et al., 2018, 2019). Such changes, not only weaken fish against
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stressors and diseases, but also cause flesh quality deterioration (Zhang
et al., 2016). Thus, preventing the harmful effects of ammonia on
aquatic animals has a great impact on sustainable aquaculture.

In this regard, nutritional manipulation and use of dietary anti-
oxidant additives due to their widespread beneficial effects on fish
health during exposure to environmental ammonia have been con-
sidered by researchers. For example, exogenous taurine could mitigate
the adverse effect of ammonia on the yellow catfish hematologic, an-
tioxidant and immune responses (Zhang et al., 2018). In another study,
Harsij et al. (2020) showed that the fish fed diets supplemented with
antioxidants composing nano‑selenium, vitamin C and E, and reared
under sub-lethal ammonia exposure, significantly had better growth
performances, and immune and antioxidant responses than those of fish
in the control groups. In addition, previous studies have shown the
antioxidant effects of medicinal plants and their extracts in the face of
toxicants including ambient ammonia in various fish species (Abdel-
Tawwab et al., 2015, 2017a, 2017b, 2018; Hamed and Abdel-Tawwab,
2017; Hoseini et al., 2018a, 2018b; Mahfouz, 2015; Taheri Mirghaed
et al., 2019; Abdel-Tawwab et al., 2019). For example, Hoseini et al.
(2019) observed that myrcene- or menthol-supplemented diets in-
hibited ammonia-induced tissue damage, anaemia and oxidative stress
in common carp.

Garlic Allium sativum is an edible plant with medicinal character-
istics and widely used in all over the world. It has antimicrobial, an-
ticancer, antioxidant, hepatoprotective, and immunostimulant activity
(Awad and Awaad, 2017). It has been demonstrated that garlic can
improve growth performance and survival (Etyemez Büyükdeveci et al.,
2018; Talpur and Ikhwanuddin, 2012), antioxidant activity.

(Metwally and Metwally, 2009; Mohebbi et al., 2012) and immune
status (Fall and Ndong, 2011; Ghehdarijani et al., 2016) in different fish
species. But, to the best of our knowledge, there is no information about
the effects of garlic supplementation in fish exposed to ambient am-
monia. Therefore, the present study was performed to evaluate the
potential effects of garlic oral administration on some immunological
and antioxidant parameters of common carp exposed to sublethal
concentration of ambient ammonia.

2. Materials and methods

2.1. Preparation of garlic (G) powder and experimental diets

The fresh garlic was purchased from the local market, transferred to
the laboratory and crushed after washing with deionized water. Then it
was dried in an oven at 45 °C for 48 h and the homogenized powder was
prepared using a mill. The powder was stored in zip pack at 4 °C until
use. To prepare the experimental diets, 0.5% (0.5G), 1% (1G) and 1.5%
(1.5G) garlic powders were added to the control (CTRL) diet (Table 1).
To prepare the diets, feedstuffs were mixed well and 0.3 L water was
added to each kg of the moisture. The dough was turned to sticks by a
meat grinder. The sticks were crushed to form pellet (Hoseini et al.,
2017).

2.2. Fish and experimental conditions

Ethics for procedures and animal use during the study were fol-
lowed as described by Naderi et al. (2012). Fish (75 ± 7.36 g) were
purchased from local farms and transported to the laboratory. During
the one-week acclimatization fish were fed with the control diet. Then,
a total number of 180 carp were stocked in 12 fiberglass tanks (100 L
water volume) assigned to four treatments with three replicates (15 fish
per tank). Fish were fed with either of the CTRL, 0.5, 1.0 and 1.5% G for
35 days. Feeding was done twice a day at a rate of 3% body weight
(Ashouri et al., 2015). During experiment biometry was performed
(three times) to adjust feed amount. Each tank was continuously aer-
ated, siphoned and 70% of its water was replaced daily with clean
water. Water temperature (21.3 ± 0.95 °C), pH (7.85 ± 0.56),

dissolved oxygen (6.11 ± 0.67 mg/L) and total ammonia
(0.22 ± 0.06 mg/L) were monitored every other day by Hach multi-
parameter meter HQ40d (Loveland, Colorado, USA) and Wagtech di-
gital photometer 7100 (Berkshire, UK).

At the end of the feeding trial, the fish were challenged with
0.5 mg/L ambient unionized ammonia nitrogen for 3 h (Taheri
Mirghaed et al., 2019). To achieve this amount, 3.01 g ammonium
chloride were added to each experimental tank (100 L water volume),
based on water temperature and pH.

2.3. Blood sampling and analysis

At the end of the 35-day feeding period, blood samples were taken
before (AM-) and after a 3-h ammonia exposure (AM+). At each
sampling time, two fish were sampled randomly from each tank and
anesthetized in 100 mg/L eugenol solution. Then, using the heparinized
syringes (5 mg heparin/ml blood), blood samples were taken from
caudal vein and discharged into 2-ml plastic tubes. Samples were cen-
trifuged at 1200 ×g for 10 min and obtained plasma were stored at
−70 °C until analysis. Each plasma sample was analyzed separately
(n = 6).

Plasma glucose level was determined spectrophotometerically using
Pars Azmun kits (Tehran, Iran) (Simakani et al., 2018). ELISA method
(using IBL kit, Gesellschaft für Immunchemieund Immunbiologie,
Germany) was applied to measure plasma cortisol level (Mazandarani
et al., 2017). The inter- and intra-assay variation were 8.96 and 10.4%,
respectively.

Plasma superoxide dismutase (SOD) level was estimated by mea-
suring the rate of cytochrome C reduction and using a commercial kit
(ZellBio, GmbH, Veltinerweg, Germany) (McCord and Fridovich, 1969).
Plasma catalase (CAT) level was measured following Góth (1991)
method by measuring the rate of hydrogen peroxide decomposition.
Plasma glutathione peroxidase (GPx) level was measured using a
commercial kit (ZellBio, GmbH, Veltinerweg, Germany) by estimating

Table 1
Dietary formulation and proximate composition analysis of experimental diets
containing different levels of garlic (Rajabiesterabadi et al., 2019).

Ingredient (g/kg) CTRL 0.5G 1G 1.5G

Soybean meala 16.5 16.5 16.5 16.5
Fish mealb 17.0 17.0 17.0 17.0
Poultry mealc 14.0 14.0 14.0 14.0
Wheat meal 38.1 37.6 37.1 36.6
Wheat glutend 10.0 10.0 10.0 10.0
Fish oil 1.0 1.0 1.0 1.0
Soybean oil 1.0 1.0 1.0 1.0
Phytasee 0.5 0.5 0.5 0.5
Lysinef 0.6 0.6 0.6 0.6
Methioninef 0.3 0.3 0.3 0.3
Mineral mixg 0.5 0.5 0.5 0.5
Vitamin mixh 0.5 0.5 0.5 0.5
Garlic 0.0 0.5 1.0 1.5
Proximate composition
Dry matter 91.0 91.1 90.4 90.2
Protein 40.3 40.2 39.9 39.8
Lipid 8.97 8.89 8.88 8.90
Ash 6.41 6.52 6.58 6.60

a Soyabean Co., Gorgan, Iran (crude protein 45.5%)
b Peygir co., Gorgan, Iran (crude protein 55.8%)
c Peygir co., Gorgan, Iran (crude protein 50.0%)
d Shahdineh Aran co., Isfahan, Iran (crude protein 78.3%)
e CheilJedang co., Seul, Korea
f Golbid co., Tehran, Iran (10,000 IU)
g The premix provided following amounts per kg of diet: Mg: 350 mg; Fe:

13 mg; Co: 2.5 mg; Cu: 3 mg; Zn: 60 mg; NaCl: 3 g; dicalcium phosphate: 10 g.
h The premix provided following amounts per kg of feed: A: 1000 IU; D3:

5000 IU; E: 20 mg; B5: 100 mg; B2: 20 mg; B6: 20 mg; B1: 20 mg; H: 1 mg; B9:
6 mg; B12: 1 mg; B4: 600 mg; C: 50 mg.

M. Yousefi, et al. Aquaculture 526 (2020) 735400

2



the glutathione oxidation rate. Plasma malondialdehyde (MDA) level
was determined by the thiobarbituric acid method and using a com-
mercial kit (ZellBio, GmbH, Veltinerweg, Germany) (Yousefi et al.,
2018).

Plasma lysozyme was evaluated by turbidimetric method using
Micrococcus luteus as the target in phosphate buffer (pH = 6.2) as de-
scribed by Ellis (1990). Plasma alternative complement haemolytic
(ACH50) level was measured based on hemolytic activity with gelatin-
veronal buffer containing EGTA and Mg2+ (pH= 7) as the medium and
sheep white blood cell (RBC) as the target (Yano, 1992). According to
Siwicki and Anderson (1993), total immunoglobulin (Ig) was measured
after polyethylene glycol precipitation of Ig and subtraction of initial
and final total protein.

Plasma bactericidal activities were evaluated against Aeromonas
hydrophila, as previously described by Zargari et al. (2018). Briefly, the
bacterium suspended at 546 nm and 0.5 optical density. Dilution of
suspension was performed 5 times (1:10) and the least dilution was
used for this assay. 1 mL suspension was added to 100 μL plasma and
incubated at 20 °C for 1 h. Then, plasma and bacteria mixture were
cultured on nutrient agar plates (with three replicates). The number of
colonies was counted after 24 h incubation at 25 °C. Phosphate buffered
saline was used instead of serum in the control samples. The colony
numbers were converted to bactericidal activity using the following
formula:

= ×Bactericidal activity 100, 000 (1/colony number)

Alanine transaminase (ALT), alkaline phosphatase (ALP) and as-
partate transaminase (AST) activities were evaluated with spectro-
photometric method using commercial kits (Pars Azmun kits, Tehran
Iran), as previously reported in common carp (Hoseini et al., 2012,
2018).

2.4. Statistical analyses

Data were tested for normal distribution using the Shapiro-Wilk test;
accordingly, all data except GPx, total Ig and AST were log-transformed
before ANOVA. The data were analyzed by two-way ANOVA (garlic
levels × ammonia exposure). When there was an interaction effect of
garlic levels × ammonia exposure (all data except total Ig and AST),
one-way ANOVA was used for the data analysis. In this case, the data
normality (Shapiro-Wilk test) and variance homogeneity (Levene's test)
were tested first, and log-transformation was applied when necessary
(bactericidal activity). All analyses were conducted in SPSS v.21.

3. Results

Plasma cortisol and glucose levels of fishes significantly elevated
after exposure to ambient ammonia (Fig. 1). All garlic treatments
markedly decreased the plasma cortisol and glucose levels compared to
the control group (n = 12; P < .001). A significant interaction was
shown between garlic levels and ammonia exposure for these para-
meters. Ammonia exposure led to a significant increase in cortisol and
glucose levels, whereas the highest levels were recorded in the control
group.

Plasma SOD and CAT activity of fishes significantly elevated after
exposure to ambient ammonia (Fig. 2). Garlic levels had no significant
effects on SOD; whereas significantly increased CAT activity
(P < .001). Dietary garlic levels and ammonia exposure had interac-
tion effects on plasma SOD and CAT activities. Ammonia exposure led
to a significant increase in SOD activity and the highest increase was
related to the control group. Also, ammonia exposure significantly in-
creased CAT activity in the control and 0.5% G groups; but had no
effects on 1 and 1.5% G groups.

Plasma GPX activity and MDA level of fishes markedly increased
after exposure to ambient ammonia (Fig. 3). Dietary garlic supple-
mentation significantly decreased plasma GPX activity (P < .006) and

MDA level in all treatments compared to the control group (P < .001).
There was an interaction effect between ammonia exposure and dietary
garlic levels on plasma GPX activity and MDA level. Ammonia exposure
led to an increase in plasma GPX activity of control and 0.5% G groups
but had no effects on 1 and 1.5% G groups. Ammonia exposure mark-
edly increased plasma MDA levels, whereas the highest increase was
observed in the control compared to other groups.

According to the results shown in Fig. 4, plasma lysozyme activity of

Fig. 1. Effects of dietary garlic administration and ammonia exposure on cor-
tisol and glucose levels (mean ± SE) in the blood plasma of common carp.
Asterisk show significant effects of ammonia exposure (n = 24). Uppercase
letters show significant effects of dietary garlic levels (n = 12). Lowercase
letters show significant interaction effects of garlic levels and ammonia ex-
posure (n = 6).

Fig. 2. Effects of dietary garlic administration and ammonia exposure on SOD
and CAT activity (mean ± SE) in the blood plasma of common carp. Asterisk
show significant effects of ammonia exposure (n = 24). Uppercase letters show
significant effects of dietary garlic levels (n = 12). Lowercase letters show
significant interaction effects of garlic levels and ammonia exposure (n = 6).
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fishes significantly increased after exposure to ambient ammonia,
whereas ACH50 activity decreased (P < .001). Dietary garlic supple-
mentation significantly increased plasma lysozyme activity (P < .001)
in 1 and 1.5% G groups compared to the control and 0.5% G groups
(P < .001). Also, dietary garlic levels increased the ACH50 activity
compared to the control group (P < .001). Dietary garlic levels and
ammonia exposure had interaction effects on plasma lysozyme and

ACH50 activities. Ammonia exposure led to an increase in plasma ly-
sozyme activity of the control and 0.5% G groups; but had no effects on
1 and 1.5% G groups. After ammonia exposure, ACH50 activity sig-
nificantly decreased in the control group; but no change was observed
in other treatments.

Plasma total Ig level and bactericidal activities significantly
(P < .001) decreased in all treatments after ammonia exposure
(Fig. 5). Dietary garlic administration in all levels significantly in-
creased plasma Ig level and bactericidal activity compared to the con-
trol group (P < .001). Dietary garlic levels and ammonia exposure had
no interaction effects on plasma Ig level; but their interaction effects
observed on plasma bactericidal activity. Ammonia exposure led to a
significant decrease in plasma bactericidal activity and the highest
decrease was related to the control group compared to other groups
(P < .001).

Ammonia exposure led to a significant increase in plasma ALT, AST
and ALP activities (Fig. 6). Dietary garlic supplementation significantly
decreased plasma ALT, AST and ALP activities in all treatments com-
pared to the control group (P < .001). There were any significant
differences between 1 and 1.5% G groups in the case of ALT and AST
activities, whereas the lowest level of ALP was observed in the 1.5% G
group. Dietary garlic levels and ammonia exposure had interaction ef-
fects on plasma ALT and ALP activities but had no interaction effects on
plasma AST activities. Ammonia exposure markedly increased plasma
ALT and AST activities in all treatments, whereas the highest increase
was observed in the control compared to other groups.

4. Discussion

Ammonia poisoning is a very serious threat to aquatic organisms, as
most of the bony fish such as common carp C. carpio (Hoseini et al.,
2019), grass carp C. idellus (Xing et al., 2016), crucian carp C. auratus
(Ren et al., 2016) and rainbow trout O. mykiss (Harsij et al., 2020) are
sensitive to its toxicity. The previous studies have proved that ammonia
toxicity cause growth degradation and health deterioration (Peyghan
and Takamy, 2002; Xing et al., 2016) oxidative stress (Zhang et al.,

Fig. 3. Effects of dietary garlic administration and ammonia exposure on GPX
activity and MDA level (mean ± SE) in the blood plasma of common carp.
Asterisk show significant effects of ammonia exposure (n = 24). Uppercase
letters show significant effects of dietary garlic levels (n = 12). Lowercase
letters show significant interaction effects of garlic levels and ammonia ex-
posure (n = 6).

Fig. 4. Effects of dietary garlic administration and ammonia exposure on ly-
sozyme and alternative complement activities (mean ± SE) in the blood
plasma of common carp. Asterisk show significant effects of ammonia exposure
(n = 24). Uppercase letters show significant effects of dietary garlic levels
(n = 12). Lowercase letters show significant interaction effects of garlic levels
and ammonia exposure (n = 6).

Fig. 5. Effects of dietary garlic administration and ammonia exposure on im-
munoglobulin levels and bactericidal activities (mean ± SE) in the blood
plasma of common carp. Asterisk show significant effects of ammonia exposure
(n = 24). Uppercase letters show significant effects of dietary garlic levels
(n = 12). Lowercase letters show significant interaction effects of garlic levels
and ammonia exposure (n = 6).
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2018) and tissue damages (Hoseini et al., 2019), leading to suppression
of stress and disease resistance in fish (Ackerman et al., 2006). Nutri-
tional supplements including medicinal herbs with antioxidant prop-
erties can be used to counter these threats (Awad and Awaad, 2017;
Rajabiesterabadi et al., 2020). Garlic includes two major groups of
antioxidant components, flavonoids and sulfur-containing compounds
(diallyl disulfide and s-allyl cysteine) (Sharma et al., 2010). Flavonoids
(as natural antioxidants) are oxidized by free radicals, resulting in a
more stable, less-reactive radical (Nijveldt et al., 2001). Diallyl disulfide
removes hydroxyl radicals, and s-allyl cysteine suppresses the forma-
tion of superoxide (Chung, 2006). Although garlic and its extracts have
been widely used in aquaculture research, no studies have been re-
ported on the potential effects of garlic against toxicity with ambient
ammonia.

Fish may react to environmental stress by elevation of plasma cor-
tisol and glucose as the primary and secondary responses (Barton,
2002). In line with the present results, the previous studies demon-
strated that ambient ammonia elevation leads to an increase in plasma
cortisol and glucose levels (Knoph and Olsen, 1994; Randall and Tsui,
2002); such changes provide the energy needed to deal with environ-
mental stress (Taheri Mirghaed et al., 2018). Therefore, the present
results confirm that garlic can successfully counteract the negative ef-
fects of ammonia toxicity through suppression of increased cortisol and
glucose. Similarly, previous studies showed that anthraquinone extract
and cineole prevented the increase in these factors in fish exposed to

crowding stress (Taheri Mirghaed et al., 2019; Xie et al., 2008).
In the present study, after acute ammonia intoxication, the activity

of antioxidant enzymes including SOD, CAT and GPX increased, sug-
gesting the activation of antioxidant system to counteract oxidative
conditions under the ammonia toxicity (Zhang et al., 2018). The highest
activity of the antioxidant enzymes were observed in the control group;
whereas, the garlic-supplemented groups showed suppressed increase
in the enzymes' activity. It can hold the opinion that the lowest anti-
oxidant capacity was related to the control group. In fact, total anti-
oxidant capacity means the ability of antioxidants to counter and
eliminate harmful free radicals in the blood and cells (Martínez-Álvarez
et al., 2005). The present results showed that antioxidant enzyme ac-
tivities had a positive and negative correlation with total antioxidant
capacity in fish fed with garlic and control diets, respectively. Thus,
raising the antioxidant enzyme activity in the control group without the
increased antioxidant capacity may due to a “toxic excitement effect”
(Zhang et al., 2018). Also, the present study showed that dietary garlic
supplementation can mitigate the increment of MDA production com-
pared with the control group. It can be explained by the increased
antioxidant capacity in fish fed garlic diets, as above mentioned. It is
reported that garlic extract can promote antioxidant activity by
scavenging reactive oxygen species, boosting the cellular antioxidant
enzymes, glutathione peroxidase and enhancing glutathione in the cells
(Borek, 2001). The previous study showed that dietary garlic admin-
istration improved the antioxidant activity in Nile tilapia (Oreochromis
niloticus) (Metwally and Metwally, 2009). Similarly, Hoseini et al.
(2019) founded that dietary supplementation of myrcene- or menthol
enhanced antioxidant activity and alleviated increased level of MDA in
common carp exposed to ambient ammonia.

Fish immunity is suppressed by toxicants exposure (Abdel-Tawwab
et al., 2019; Wang et al., 2015; Zhang et al., 2018). Lysozyme, a lytic
enzyme is one of the non-specific humoral molecules in fish. This en-
zyme can act in opsonization of target cells and activate the plasma
molecules (the complement system) involved in the control of in-
flammation (Lee, 2015). It was noticed that 1 and 1.5% garlic supple-
mentations significantly improve the lysosome level before ammonia
exposure. Moreover, these garlic levels could mitigate the ammonia-
induced lysozyme elevation. In line with our results, Taheri Mirghaed
et al. (2019) showed that Dietary 1,8-cineole significantly prevented
ammonia-induced lysozyme elevation in common carp.

ACH50 activity and total Ig levels as indicators of immune status
may be suppressed in fish exposed to toxicants (Sharifian et al., 2015;
Wang et al., 2014). Dietary garlic levels significantly enhanced these
factors in plasma compared to the control group, suggesting immune
stimulation by garlic supplementation. Also, 1 and 1.5% garlic levels
mitigate the decreasing of ACH50 activity after exposing to ambient
ammonia. Similar results were observed in C. carpio (Hoseinifar et al.,
2018) and O. mossambicus (Wu et al., 2010) fed with dietary Eriobotrya
japonica and Toona sinensis extracts, respectively. Taheri Mirghaed et al.
(2019) reported that plasma ACH50 activities and total Ig levels de-
creased after exposure to ammonia, but 0.5% dietary 1,8-cineole could
mitigate the suppression of these factors compared to the control group.

It has been demonstrated that garlic takes effect as an im-
munostimulant by boosting bactericidal activities (Awad and Awaad,
2017; Erguig et al., 2015). In the present study, garlic levels sig-
nificantly increased the plasma bactericidal activity and mitigate its
decrement after exposure to ambient ammonia. The results are in line
with the previous studies in Asian seabass, Lates calcarifer (Talpur and
Ikhwanuddin, 2012) and rainbow trout (Nya and Austin, 2009).

ALP, AST, and ALT are non-functional enzymes which mainly found
in the liver and kidney (Ghelichpour et al., 2020). Increased circulating
levels of these enzymes are a sign of tissue (De Smet and Blust, 2001;
Taheri Mirghaed et al., 2019). According to the present results, am-
monia exposure significantly increased plasma ALT, AST and ALP levels
of common carp. It may be due to the vital tissues damage or hemolysis
caused by ammonia exposure (Taheri Mirghaed et al., 2017; Hoseini

Fig. 6. Effects of dietary garlic administration and ammonia exposure on ALT,
AST and ALP activities (mean ± SE) in the blood plasma of common carp.
Asterisk show significant effects of ammonia exposure (n = 24). Uppercase
letters show significant effects of dietary garlic levels (n = 12). Lowercase
letters show significant interaction effects of garlic levels and ammonia ex-
posure (n = 6).
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et al., 2018b). As impaired oxidative enzyme activities and elevated
level of MDA can support this hypothesis. Previous studies have de-
monstrated that ammonia exposure caused tissue damage and increased
these enzymes levels in the blood of different fish species (Hoseini et al.,
2019; Peyghan and Takamy, 2002; Taheri Mirghaed et al., 2019). In the
present study, garlic levels significantly decreased the plasma ALT, AST
and ALP levels and mitigate their elevation after exposure to ambient
ammonia compared to the control group. Masjedi et al. (2013) were
observed the preventive effects of garlic on elevation of these enzymes
in serum of the diabetic Rats. Similar results were reported in fish fed
with 1,8-cinoele (Taheri Mirghaed et al., 2019) and myrcene- or men-
thol-supplemented diets (Hoseini et al., 2019) and exposed to ambient
ammonia. Having antioxidant components (flavonoids and sulfur-con-
taining components), garlic may enhance cell membrane stabilization
and protect tissues against free radical-mediated toxic damages. Having
antioxidant components (flavonoids and sulfur-containing compo-
nents), garlic may enhance cell membrane stabilization and protect
tissues against free radical-mediated toxic damages, that resulted in
decreased ALT, AST and ALP levels.

In conclusion, the present results demonstrated that dietary garlic
supplementation especially at 1 and 1.5% diets, successfully enhanced
most of the measured parameters. Also, it mitigates the adverse effect of
ammonia exposure characterized by improving antioxidant activities
and decreasing MDA production. Further studies are encouraged to
monitor flesh quality and taste following feeding the fish with garlic-
supplemented diet and exposed to ammonia, as formation of MDA in
fish flesh changes its quality and taste.
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